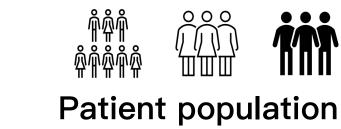


Introduction:

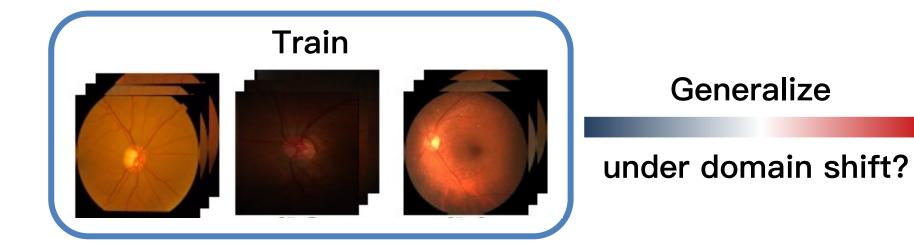
Domain shift in medical applications:

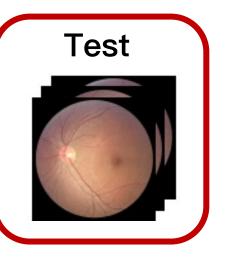


Cause Limited generalization ability for machine learning methods Performance degradation under domain shift -> unreliable for medical

Domain Generalization (DG)

How to learn generalizable models under domain shift?





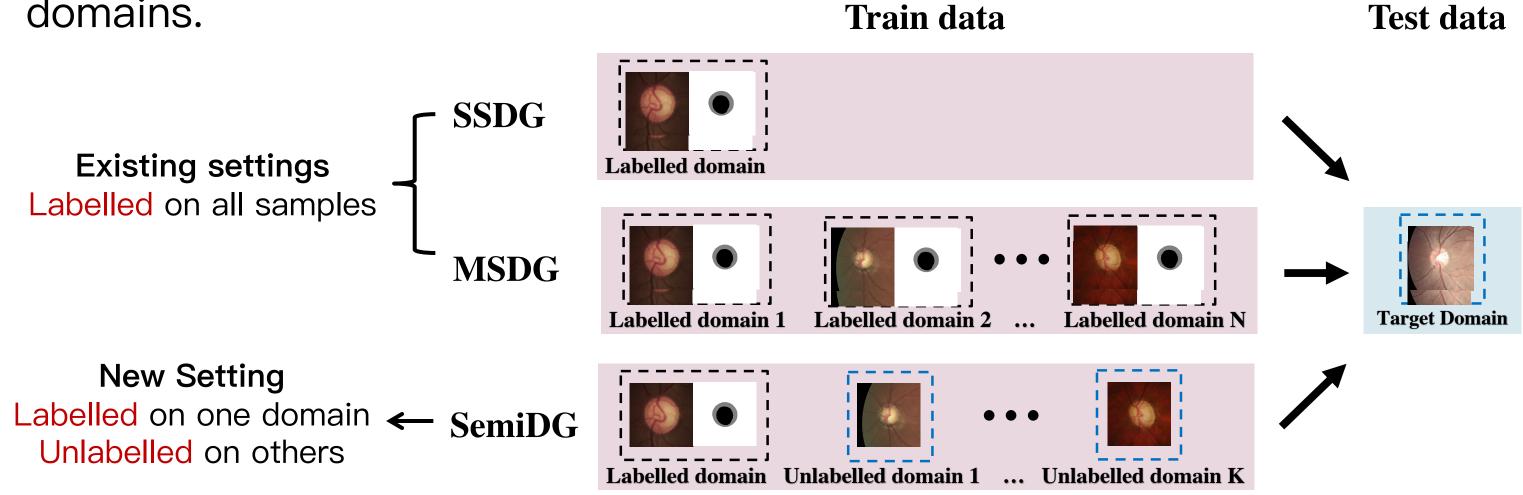
Semi-supervised Domain Generalization (SemiDG):

Single–Source DG / Multi–Source DG: all source domain(s) are labelled.

SemiDG: One labelled source domain and several unlabelled source

domains.

Train data



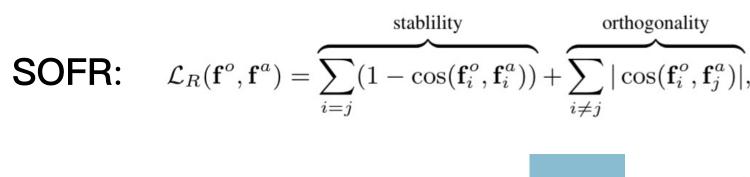
SemiDG only needs annotations from one domain and aims to achieve comparable performance as MSDG.

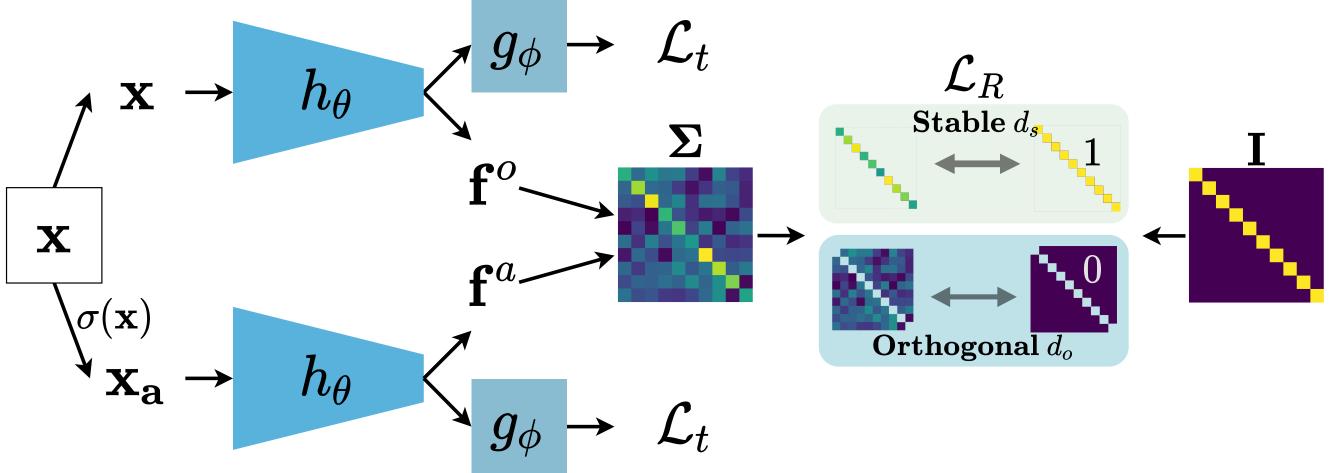
Ruipeng Zhang^{1,2}, Qinwei Xu^{1,2}, Chaoqin Huang^{1,2}, Ya Zhang^{1,2}, Yanfeng Wang^{1,2} ¹ Cooperative Medianet Innovation Center, Shanghai Jiao Tong University

Method: Stable and Orthogonal Feature Regularization (SOFR)

Two characteristics to achieve generalizable on features

- Stability: be robust across different domains.
- Orthogonality: be of minimal redundancy to avoid overfitting





Stable \checkmark and **Orthogonal** \times ->dummy solutions on unlabelled samples! **Stable** \times and **Orthogonal** $\sqrt{-}$ hard to obtain domain–invariant predictions!

New Benchmarks for SemiDG:

Source domains for train:

> One labelled + Two unlabelled

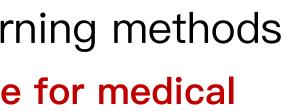
Target domain for test:

> The left one domain

Evaluation for Fundus benchmark:

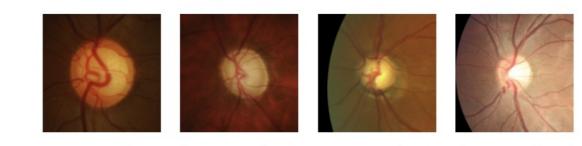
Averaged on 12 different permutation of domains Evaluation for Chest X–Ray benchmark:

- Train: MIMIC (labelled) NIH+CheX (unlabelled)
- ➤ Test: PC

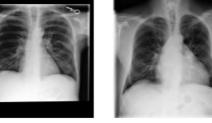


Semi-supervised Domain Generalization for Medical Image Analysis ² Shanghai AI Laboratory

 $d_s = \sum \left(1 - \cos(\mathbf{f}_i^o, \mathbf{f}_i^a)\right)$ $d_o = \sum |\cos(\mathbf{f}_i^o, \mathbf{f}_j^o)|.$



(a) Domain 1 (b) Domain 2 (c) Domain 3 (d) Domain 4 Fundus Images: Optic Cup/Disc Segmentation Task



(a) MIMIC (b) NIH (d) PC (c) CheX Chest X-Ray Images: Diagnosis Prediction Task

Experimental Results:

Table 1: Comparison with baselines on two benchmarks.

Method	Fu	CXR		
Methoa	Disc	Cup	avg	(mAUC)
SSDG	0.8434	0.6662	0.7548	0.8166
MT	0.8441	0.6771	0.7606	0.8149
CORAL	0.8466	0.6781	0.7624	0.8248
RSC	0.8470	0.6793	0.7631	0.7897
Self-training	0.8499	0.6863	0.7681	0.7955
DANN	0.8543	0.6887	0.7715	0.8284
TCSM	0.8596	0.6853	0.7725	-
EntMin	0.8633	0.6908	0.7771	0.7993
SOFR + Jitter	0.8634	0.7055	0.7844	0.8334
SOFR + AM	0.8822	0.7277	0.8050	0.8443
MSDG	0.9125	0.7822	0.8473	0.8317

Achieve high performance on different domain randomizations! Perform better than MSDG with less annotations! (On CXR benchmark)

Conclusions:

We propose a **new realistic setting** for domain generalization named **SemiDG** by introducing unlabelled domain into the training process.

We design a **regularization-based** SemiDG method which constrains the feature to be both stable and orthogonal to improve the generalization ability under domain shift.

We propose two new benchmarks for SemiDG and the experimental results show the effectiveness of our proposed method.

Contact Us:

Zhang Ruipeng, PhD student, SJTU Email: zhangrp@sjtu.edu.cn **Homepage:** https://mediabrain.sjtu.edu.cn/

Shanghai Artificial Intelligence Laborator

 Table 2: The analysis of different components in SOFR on
 Fundus (Using AM as domain randomization).

SFR	OFR	Self-OFR	Disc DSC	Cup DSC	avg
-	-	-	0.8617	0.7039	0.7828
\checkmark	-	-	0.8663	0.7064	0.7864
-	\checkmark	-	0.8649	0.7186	0.7917
-	-	\checkmark	0.8710	0.7071	0.7891
\checkmark	-	\checkmark	0.8724	0.7244	0.7984
\checkmark	\checkmark	-	0.8822	0.7277	0.8050

With only both stable and orthogonal can achieve high generalizable performance!

Table 3: The impact of samples from unsupervised domains
 in SOFR on Fundus (Using AM as domain randomization).

#Samples@U1	0	400	0	200	400
#Samples@U2	0	0	400	200	400
avg DSC	0.7185	0.7455	0.7657	0.7711	0.7730

Unlabelled samples from more domains are more effective!

